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Simultaneous translation

* Machine Translation with low latency.

* Need to start translating before the end of sentences.

Training methods

* Data filtering, selection, and augmentation.

° * Pre-training and fine-tuning.
IntrOdUCtlon * Wait-k training.

* R-Drop training.

» Wait-k strategy: Fixed-latency policy, keep the output sentence
lagging k words behind the input sentence.

» Chunking strategy: Adaptive-latency policy, detect segmentation
boundaries in source sentences and start translating at boundaries.

 Streaming Chunking: Combine wait-k and chunking strategies.



Data Filter & Selection

- Filter noise data of the BSTC(speech domain) and the CWMT(news domain) corpus.
« Select speech domain data of the CWMT corpus.
« D17 corpus for pre-training.

Pre-training (data) Data statistic dev (sacreBLEU)
Orig BSTC+CWMT (DO0) 9.1M 16.82
+rules-filter 7.7TM 18.09
+align-langid-filter 7.2M 18.04
+PPL-selection (D1) 6.2M 17.99

Table 3: Data filtering and selection in the pre-training stage. BLEU is computed by sacreBLEU in sentence-
level. Filtering and selection methods are applied incrementally.
rules-filter: Hand-crafted rules and deduplication.
- align-langID-filter: Filter noise data with fast_align and lang/D.
« PPL-selection: Select by PPL(Perplexity) scores with KenlM.



Data Filter & Selection

- R-Drop and big dropout enhance the performance.
- Up-sampling speech domain data is confirmed to be beneficial.

Pre-training (method) Data statistic dev (sacreBLEU)
BSTC+CWMT (D1) 6.2M 17.99
+up-sampling 6.34M 18.40
+dropout 0.25 6.2M 18.59
+R-Drop (a = 5) 6.2M 19.72
+up-sampling + dropout 0.25 + R-Drop 6.34M 21.48

Table 4: Data statistic and BLEU on the development of our pre-training methods. BLEU is computed by
sacreBLEU in sentence-level.

« up-sampling: Up-sampling BSTC corpus 5 times.
« dropout 0.25: Dropout value set as 0.25 (Default 0.1).
R-Drop: Utilize R-Drop training method.



Data Augmentation
 Pre-train on CWMT and BSTC corpus.

- Forward translation augmentation performs better in pre-training.

Pre-training (Augmentation) Data statistic (Pre-training) dev (sacreBLEU)

M1 (only pre-train) 6.34M 21.48
+EFT pre-train 10.95M 22.32
+BT pre-train 11.03M 19.90

Table 5:  Results of data augmentation in the pre-training stage. We use the M1 model to generate the FT and
BT augment data and mixed with the D1 corpus for pre-training.

* FT pre-train: Augment pretrain corpus with Forword-Translation.
« BT pre-train: Augment pretrain corpus with Backword-Translation.



Data Augmentation

 Fine-tune on BSTC corpus.

« Forward translation, backward translation, and character-level
augmentation are all beneficial in fine-tuning.

Fine-tuning (Augmentation) Data statistic (Fine-tuning) dev (sacreBLEU)

M1 (fine-tuned on BSTC) 36K 2241
+5FT 197K 22.92
+5BT 211K 22.59
+char-aug 185K 22.80
+5BT +5FT +char-aug 525K 23.05

Table 6: Results of data augmentation in the fine-tuning stage. The M1 model is leveraged to generate FT
and BT augment data, and beam 5 results are saved. For the char-aug. we use character-level augmentations
including insertion, deletion, duplication, and homophone substitution. The models in this table are all based on
the same pre-trained model.

« FT pre-train: Augment pretrain corpus with Forword-Translation.
« BT pre-train: Augment pretrain corpus with Backword-Translation.

« char-aug: Character-level augmentation for Chinese sentences.



Streaming Chunking

« Example of error word in character-stream.

stream-id | char-stream

word-stream

1 AL AL

2 ji/l9E] Bl

3 A E L HErE

4 A EEle A 5Ele

5 A Seledk A Seledk

6 A Sele gk A e g

7 IR Jele e e Sele gk i

8 ﬁl"ﬁﬁ'ﬁﬂﬂ;&?‘ﬁ"\rf” A Jele g e el

9 eI - A Seledesena

10 33[ ﬁf‘ﬁwﬁﬁzﬁ%’\r?’ A E e e —

11 ﬁﬁ%%&%ﬂw K AR Seledoe rat— F

12 Eocledeira— A W Jele g e ran— Hk

13 93[ *ET%HJE&&E’T?” MRHC | el g TR EC
na | shou xian | ne | wo | xian | jie shao | yixia | wo 71 ji

full sentence | #F | Hh WK & | g | —F | HKHD

then first | I | - |introduce | - | myself

Table 2:

Case analysis of incomplete streaming in a Chinese sentence. Char-stream presents sentences by

characters. Word-stream presents sentence by word. The prefixes in red color mean error in char-stream,
which contains incomplete word-piece. The partial word piece may cause misunderstanding and incorrect

translation.



Streaming Chunking

- Wait-k training:
« Pre-train with multi-path wait-k.
« Fine-tune with simple wait-k.

- Segmentation Model:
« Based on Chinese Bert.

* Finetune with word boundaries
segmented by jieba.

« Used to detect word boundaries.

 Streaming Chunking Inference:
« Set k like wait-k inference.

« Perform translation only at word
boundaries detected by the
segmentation model.

Source:

Target:

béi jir\lg Ii gong da xue niém t‘:lz‘m sheng yan an
| ®[E[|I|X 1940 ﬁl EE =
Streaming Segmentatlon Model
v L | k|
Beijing | Institute | of | Technology | | was | | born in Yan'an 1940




Experiment Results

En-Zh text-to-text track
« The ensemble model shows the best performance.

« The streaming chunking method further improves
the performance.
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Figure 2: Results of M2 wait-k models. Models are

Model dev (SacreBleu) dev (Mteval-v13a)
M1 22.43 27.26
M2 23.62 28.96

Table 7:

Results of data augmentation on standard

transformer model. The M1 model is trained with pre-
training and fine-tuning. The M2 model leverage data
augmentation in both the pre-training and the fine-

tuning stage.

list in Table 8. PaddlePaddle waith is wait-k model
provided by organizer.
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Figure 3: Results of streaming chunking method.

M2 ensemble chunk add

streaming segmentation

model compare to M2 ensemble.



Experiment Results

En-Zh audio-to-text track En-Es text-to-text track
« Performance is influenced by ASR model. - Wait-k training and inference.
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Figure 5: Results of Zh-En audio-to-text track. Figure 4: Results of En-Es text-to-text track. BLEU
BLEU is computed in document level with Mteval- is computed in document level with Mteval-v13a.

v13a.






