System Description on Automatic Simultaneous Translation Workshop

Tracks and Results

- 1. We participate in all the two directions of Chinese-to-English translation, Chinese audio to English text and Chinese text to English text.
- 2. We do data filtering and model training techniques to get the best BLEU score and reduce the average lagging.
- 3. We propose a two-stage simultaneous translation pipeline system which is composed of Quartznet and BPE-based transformer.
- 4. We propose a competitive simultaneous translation system and achieves a BLEU score of 24.39 in the audio input track.

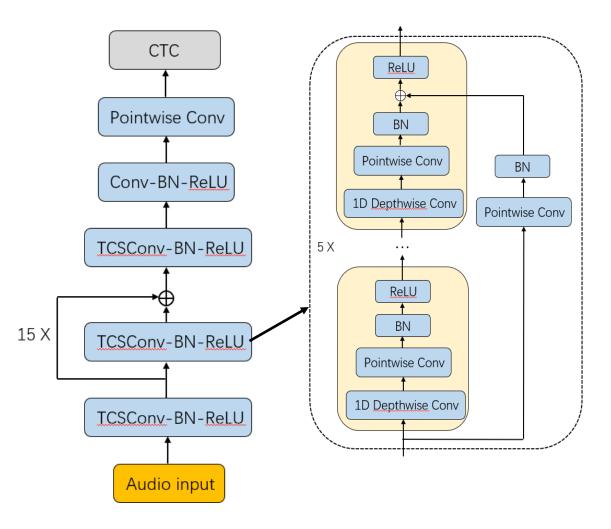
Datasets

1.Audio Data

Table 1: ZH-EN audio train datasets

Data Source	Duration	Total Samples
Qianyan(NAACL)	70hours	36,140
Aishell-1	178hours	120,098
Collection	40hours	19,800

We use a collection of 19800 sentences as our training data (audio and transcription). Audio data were split into sentences by the sentence-level. We also use a pre-trained ASR model the similarity matching algorithm to filter audio and original transcription data of lower similarity.


2.Text Data

Dataset: CWMT 19 corpus

- 1) Data filtering
 - Human rules: Punctuation ratio, sentence length ratio, cross-entropy threshold and terminology substitution
- 2) Back translation
 - Monolingual data were translated by a pretrained English to Chinese model
- 3) Word segmentation
 - Chinese sentence: LAC toolkit
 - English sentence: Tokenizer and Truecaser (Moses scripts)
- 4) Bytes pair encoding
 - Trained a BPE model and applied it for both Chinese and English sentences

Automatic Speech Recognition

1.Model

2.Setups

Table 2: Model Configuration

Configuration	Value
Sample rate	16,000
Repeat	5
n fft	512
activation	relu
Chinese Vocabulary size	5,270
Optimizer	Adam
residual	true
filters	256/512
batch size	64

Machine Translation 1.Model

Softmax Linear Feed Forward Add & Norm Add & Norm Multi-head Feed Attention Forward Add & Norm Add & Norm Multi-head Multi-head Attention Attention Positional Encoding Source **Target Embedding** Embedding

2.Setups

Table 3: Model Configuration

Configuration	Value
Encoder/Decoder depth	6
Attention heads	16
Word Embedding	1024
FFN size	4096
Chinese Vocabulary size	50,000
English Vocabulary size	50,000
Optimizer	Adam

Table 4: Training Parameters

Parameter	Value
Label smoothing	0.1
Learning rate	16
Warmup rates	15,000
Maximum sentence length	120
Clip normalization	5

3. Fine tuning

We implement fine-tuning on our model using the development set of qianyan audio datasets (956 sentence pairs) to improve the translation quality on auotomatic simultaneous translation task.

Conclusion

- 1. This paper describes a pipeline automatic simultaneous translation system and details the process of data filtering and model training.
- 2. The consecutive wait of the best point reached to 18.4 while this simultaneous translation system achieves a BLEU score of 24.39 in the audio input track.
- 3. We will continue to research on developing an end-to-end speech translation model from Chinese speech input to English text output.

THANK YOU!