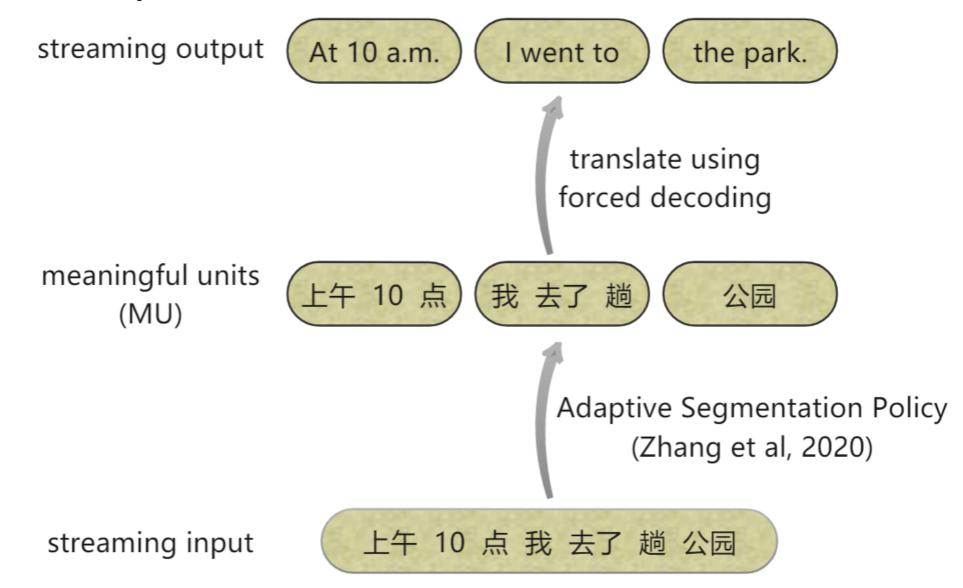
XMU's Simultaneous Translation System at NAACL 2021

Shuangtao Li, Jinming Hu, Boli Wang, Xiaodong Shi, Yidong Chen

Xiamen University, China

Outline


- Tasks
- Data and preprocessing
- Text-to-text system
- Speech-to-text system
- Experiments
- Conclusion and future work

Tasks

- We participated in two tasks:
 - Zh->En Translation, input: streaming transcription. (text-to-text)
 - Zh->En Translation, input: audio file. (speech-to-text)

Data and preprocessing

- Datasets
 - Our MT model is pretrained on CWMT19 (9.1M parallel sentence pairs).
 - Our MT model is fine-tuned on Baidu Speech Translation Corpus (39K parallel sentence pairs).
- Preprocessing
 - Filter out long sentence pairs.
 - Convert full-width characters into half-width characters.
 - Segment Chinese text and tokenize English text.
 - Apply byte-pair-encoding to all sentences.

How the system translates streaming text.

- The MU segmentor is a text classifier based on BERT.
- Once the probability of class 1 is larger than a threshold δ , the input text is segmented.

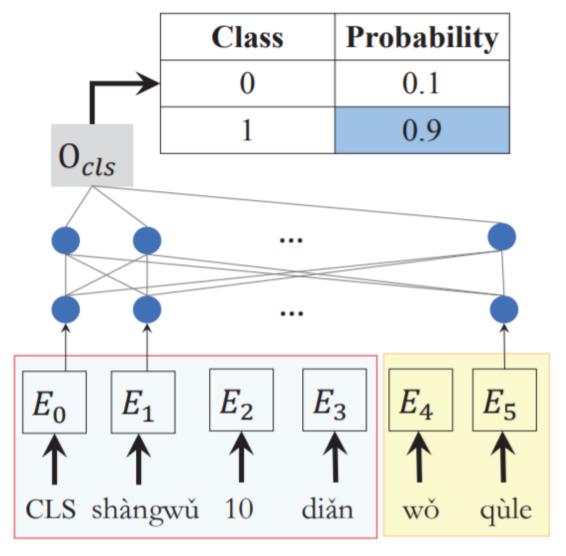


Illustration of the MU segmentor.

• To train the MU segmentor, we extract MUs and generate training data.

t	c_t	$f_t(m=2)$	l_t
1	shàngwǔ	10 diǎn	0
2	shàngwǔ 10	diǎn wǒ	0
3	shàngwǔ 10 diǎn	wŏ qùle	1
4	shàngwǔ 10 diǎn wǒ	qùle tàng	0
5	shàngwǔ 10 diǎn wǒ qùle	tàng gōngyuán	0
6	shàngwǔ 10 diǎn wǒ qùle tàng	gōngyuán	1

generate training examples

shàngwǔ 10 diǎn wǒ qùle tàng gōngyuán

extract MUs

shàngwǔ 10 diǎn wǒ qùle tàng gōngyuán

Generating examples for training the MU segmentor.

- Algorithm 1 extracts the MUs in an input sentence.
- We only use the *basic method* proposed by Zhang el al, 2020 for extracting MUs.

Algorithm 1: Extract MUs

Input: $\mathbf{x} = x_1, ..., x_T$ > streaming input

Output: $\mathbf{S}_{\mathbf{MU}}$ > list of MU segmentation k = 0 > position of last MU boundary

 $\mathbf{\widetilde{y}} = M_{nmt}(src = \mathbf{x}, tgt_{force} = None)$

3 while Reading x_t do

4 $\mathbf{y}^t = M_{nmt}(src = \mathbf{x}_{\leq t}, tgt_{force} = \mathbf{y}^k)$

if \mathbf{y}^t is a prefix of $\widetilde{\mathbf{y}}$ then

 $\mathbf{S}_{\mathbf{MU}} = \mathbf{S}_{\mathbf{MU}} \cup \{x_{k+1}, ..., x_t\}$

k = t

8 return S_{MU}

The algorithm for extracting MUs.

Speech-to-text system

- The speech-to-text system is a pipeline of three components:
 - Baidu's real time ASR service.
 - A repunctuation model, which is a BERT-based sequence labeling model.
 - A text-to-text translation subsystem.

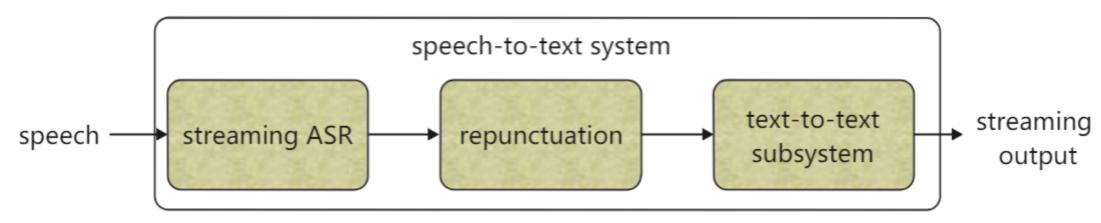
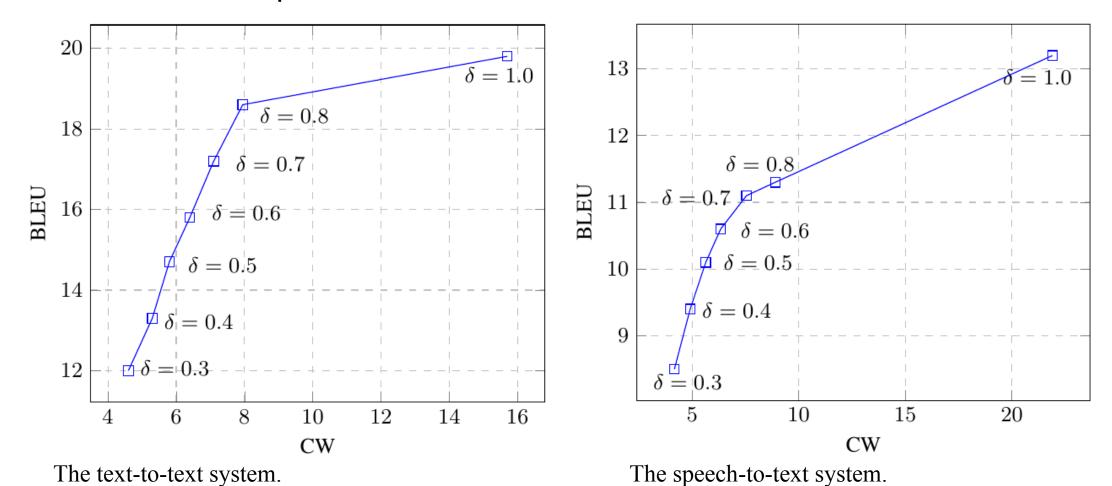



Illustration of speech-to-text system.

Experiments

 The two systems are evaluated on the development set of the Baidu Speech Translation Corpus.

Conclusion and future work

• Adaptive Segmentation Policy (Zhang et al., 2021) is effective.

• Our systems use a conventional MT model that is not designed for simultaneous translation. We will study how to train the MT model that is more suitable for simultaneous translation.