BIT's system for AutoSimTrans 2021

Beijing Institute of Technology, Beijing, China

Mengge Liu , Shuoying Chen , Minqin Li , Zhipeng Wang and Yuhang Guo Reporter: Mengge Liu 2021.6.10

Introduction & Motivation

- Simultaneous machine translation is the task of generating partial translations before observing the entire source sentence, which is useful in simultaneous interpretation and dynamic subtitles. Here are two basic methods:
- Full-sentence translation(MT):
 - Good quality, unacceptable delay.
- Incomplete-sentence translation:
 - Begin translation before receiving the full sentence.
 - Good latency, may cause bad performance.
 - Use Sub-sentence as translation unit.
 - Sub-sentence is grammatically correct and semantically complete.
 - Better latency with acceptable quality.

Introduction & Motivation

- It is feasible to cut sentence into sub-sentences in translation, when:
 - Each sub-sentence is grammatically correct and semantically complete.
 - There is no cross alignment between sub-sentences.
 - A simple example:

Source sentence	各位	亲爱	的	朋友	们	,	早上好	!	
Translation by word	Everybody	dear		friend	S	,	good morning		
Target sentence	Ladies and gentlemen,	dear		friend	S	,	good morning		
	Sub-sentence 1					Sub-sentence 2			

System Architecture

- Sentence boundary detector:
 - Read the streaming input text.
 - Detect sentence boundarys and cut segments.
 - Pass the segments to translator.
- Tranlation module:
 - Translate the segments as sub-sentences.
 - Concatenate translation results to form full translation.

Streaming input Chinese sentence:

Model Training

- Sentence boundary detector:
 - Text classification.
 - Use BERT to predict sentence boundaries in Chinese text.
- Tranlation module:
 - Pre-training and fine-tuning transformer translator.
 - Pre-trained on large parallel corpus.
 - Domain fine-tuning: adaptation for speech domain.
 - Sub-sentence fine-tuning: adaptation for shorter sub-sentences. (Short of sub-sentence corpus)

Sub-sentence corpus

- Parallel sub-sentence corpus:
 - Cut a Zh-En sentence pair into several sub-sentence pairs.
 - Basic rule: no cross alignment between sub-sentences.
- Use word-alignment tool for cutting:
 - Obtain alignment informations of sentence pairs.
 - $A = \{ < x_i, y_j > | x_i \in X, y_j \in Y \}$
 - Cut sentence pairs based on alignment matrix.
 - No cross alignment: matrix blocks in the bottom left and top right corners are all zeroes.

	各位	亲爱	的	朋友	们	,	早上好	!
ladies		1						
and			1					
gentlem en	1	1						
,			1					
dear		1						
friends				1	1			
,					1	1		
good							1	
morning							1	
!								1

Experiments

- Settings
 - Boundary detector: BERT, *chinese_L-12_H-768_A-12*.
 - Translator: Tensor2tensor, *transformer-big*.
- Datasets
 - Pre-training:
 - CWMT19.
 - Fine-tuning:
 - Domain fine-tuning: parallel text of BSTC(给出全称) corpus.
 - Sub-sentence fine-tuning: the sub-sentences pairs constructed from BSTC corpus.

Results

Model	\mathbf{AL}	BLEU
domain fine-tuned	7.467	19.45
sub-sentence fine-tuned(golden+ASR)	7.478	19.02
sub-sentence fine-tuned(golden)	7.823	$_{16.28}$
sub-sentence fine-tuned (filtered golden)	7.795	16.67

- The pre-trained model is domain fine-tuned firstly and sub-sentence fine-tuned secondly.
- The results show negative influence of sub-sentence fine-tuning.
- Filtering good-quality sub-sentence pairs makes some positive influence.
- (After fix some mistake, we see BLEU 19.60 for sub-sentence fine-tuned model.)

Thanks